Stability analysis of the split-step Fourier method on the background of a soliton of the nonlinear Schrödinger equation
نویسنده
چکیده
We analyze a numerical instability that occurs in the well-known split-step Fourier method on the background of a soliton. This instability is found to be very sensitive to small changes of the parameters of both the numerical grid and the soliton, unlike the instability of most finite-difference schemes. Moreover, the principle of “frozen coefficients”, in which variable coefficients are treated as “locally constant” for the purpose of stability analysis, is strongly violated for the instability of the split-step method on the soliton background. Our analysis explains all these features. It is enabled by the fact that the period of oscillations of the unstable Fourier modes is much smaller than the width of the soliton.
منابع مشابه
Analytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملInstability analysis of the split-step Fourier method on the background of a soliton of the nonlinear Schrödinger equation
We analyze a numerical instability that occurs in the well-known split-step Fourier method on the background of a soliton. This instability is found to be very sensitive to small changes of the parameters of both the numerical grid and the soliton, unlike the instability of most finite-difference schemes. Moreover, the principle of “frozen coefficients”, in which variable coefficients are treat...
متن کاملOn the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کاملHigher-order split-step Fourier schemes for the generalized nonlinear Schrödinger equation
The generalized nonlinear Schrödinger (GNLS) equation is solved numerically by a split-step Fourier method. The first, second and fourth-order versions of the method are presented. A classical problem concerning the motion of a single solitary wave is used to compare the first, second and fourth-order schemes in terms of the accuracy and the computational cost. This numerical experiment shows t...
متن کاملSquare Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm
In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric split-step Fourier (SSF) and fourth order Runge Kutta (RK4) which is an accurate method to solve the general nonlinear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1008.4974 شماره
صفحات -
تاریخ انتشار 2010